Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation
نویسندگان
چکیده
The MATa1 gene encodes a transcriptional repressor that is an important modulator of sex-specific gene expression in Saccharomyces cerevisiae. MATa1 contains two small introns, both of which need to be accurately excised for proper expression of a functional MATa1 product and to avoid production of aberrant forms of the repressor. Here, we show that unspliced and partially spliced forms of the MATa1 mRNA are degraded by the nuclear exonuclease Rat1p, the nuclear exosome and by the nuclear RNase III endonuclease Rnt1p to prevent undesired expression of non-functional a1 proteins. In addition, we show that mis-spliced forms of MATa1 in which the splicing machinery has skipped exon2 and generated exon1-exon3 products are degraded by the nuclear 5'-3' exonuclease Rat1p and by the nuclear exosome. This function for Rat1p and the nuclear exosome in the degradation of exon-skipped products is also observed for three other genes that contain two introns (DYN2, SUS1, YOS1), identifying a novel nuclear quality control pathway for aberrantly spliced RNAs that have skipped exons.
منابع مشابه
Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast.
Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We...
متن کاملSkip and bin: pervasive alternative splicing triggers degradation by nuclear RNA surveillance in fission yeast
Exon-skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different slice varaiants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We...
متن کاملAn exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects
A significant proportion of disease-causing mutations affect precursor-mRNA splicing, inducing skipping of the exon from the mature transcript. Using F9 exon 5, CFTR exon 12 and SMN2 exon 7 models, we characterized natural mutations associated to exon skipping in Haemophilia B, cystic fibrosis and spinal muscular atrophy (SMA), respectively, and the therapeutic splicing rescue by using U1 small...
متن کاملExtended base pair complementarity between U 1 snRNA and the 5 0 splice site does not inhibit splicing in higher eukaryotes , but rather increases 5 0 splice site recognition
Spliceosome formation is initiated by the recognition of the 50 splice site through formation of an RNA duplex between the 50 splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 50 splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 50 splice site sequence for base pairing...
متن کاملExtended base pair complementarity between U1 snRNA and the 5′ splice site does not inhibit splicing in higher eukaryotes, but rather increases 5′ splice site recognition
Spliceosome formation is initiated by the recognition of the 5' splice site through formation of an RNA duplex between the 5' splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5' splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5' splice site sequence for base pairing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012